일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- CNN
- 자전거 여행
- 소인수분해
- A Neural Algorithm of Artistic Style
- project euler
- 히토요시
- SQL
- Autoencoder
- backpropagation
- Gram matrix
- 오토인코더
- 역전파
- 역전파법
- 오일러 프로젝트
- Python
- bayesian
- 신경망
- 소수
- neural network
- 비샤몬당
- 냥코 센세
- mnist
- Convolutional Neural Network
- 합성곱 신경망
- c#
- 딥러닝
- 수달
- 베이지안
- deep learning
- 전처리
- Today
- Total
목록mnist (2)
통계, IT, AI
1. 개요 CNN으로 Mnist 데이터를 학습해보자. 먼저 대략적인 구조는 그림 과 같다. 입력 데이터의 사이즈는 \((1,28,28)\)이다. 흑백 이미지이기 때문에 1개 채널이며 가로, 세로로 28 픽셀이다. 각 원소를 0부터 255사이의 값을 가지는데 이를 정규화하여 0부터 1사이의 값을 갖도록 변환한다. 합성곱층Convolution Layer에서 필터는 \((30, 5, 5)\)의 사이즈를 갖도록 한다. 따라서 합성곱층의 결과 데이터의 사이즈는 \((30, 24, 24)\)가 된다. 풀링층Pooling Layer은 최대 풀링Max Pooling을 사용하며 \((2,2)\)의 윈도우를 갖도록 한다. 따라서 풀링층의 결과 데이터는 \((30,12,12)\)의 사이즈를 갖는다. 풀링층의 결과 데이터는 ..
1. 회귀문제- 본 포스팅에 있는 결과는 다음 첨부파일(code.7z)을 통하여 재현이 가능하다.- 역전파법을 회귀문제에 적용해보자. 실습을 위해 정의역이 \((-7,7)\)인 구간에서, \(\sin\)함수에 정규분포를 따르는 오차를 주어 적합해보자. 은닉층이 없는 경우와 있는 경우도 비교해본다. \(\epsilon\)과 같은 하이퍼 파라미터에 대한 설정은 첨부된 압축파일의 main_sin.py에 있다. - 그림 1은 은닉층을 추가하지 않고 적합한 결과이다. 붉은 선은 \(\sin\)함수, 파란 점은 에러를 추가한 자료 그리고 주황 선이 적합한 결과이다. 출력층의 활성화함수가 항등함수이기 때문에 단순선형회귀의 결과와 같다. - 그림 2는 같은 자료에 1개의 은닉층을 추가한 결과이다. 은닉층의 노드의 수는..