일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- bayesian
- mnist
- c#
- A Neural Algorithm of Artistic Style
- 오일러 프로젝트
- Gram matrix
- deep learning
- CNN
- Convolutional Neural Network
- 전처리
- 히토요시
- 소수
- project euler
- 오토인코더
- 역전파법
- 역전파
- 신경망
- 베이지안
- 냥코 센세
- 자전거 여행
- SQL
- 소인수분해
- 합성곱 신경망
- backpropagation
- neural network
- Autoencoder
- Python
- 딥러닝
- 수달
- 비샤몬당
- Today
- Total
목록Autoencoder (2)
통계, IT, AI
1. 개요 Autoenoder를 실습하기 위하여 두가지 주제를 진행하였다. 첫번째는 의 그림 5-6을 재연하는 것이고 두번째는 Autoencoder로 사전학습을 하여 신경망의 학습이 잘 이루어지는지 확인하는 것이다. 즉, 신경망의 층이 많아지면 학습이 잘 이루어지지 않는 현상인 Gradient vanishing을 Autoencoder로 해결할 수 있는지 알아보고자 하였다. 재연을 위한 모든 코드는 깃허브의 deeplearning 폴더에 올려두었다. 실행을 위해서는 data/mnist 폴더의 mnist_loader.py를 실행하여 pkl 파일을 생성해야 한다. 2. 그림 5-6 재연 의 그림 5-6은 자기부호화기의 파라미터가 시각적으로 어떠한 경향을 갖는지 표현한 것으로 아래 그림 1과 같다. 입력층의 노..
5. 자기부호화기: Autoencoder5.1. 개요 자기부호화기(Autoencoder)란 출력이 입력과 같도록 설계한 신경망이다. 예를 들어 그림 5-1과 같이 입력층과 출력층의 유닛의 수가 서로 같은 2층의 신경망을 생각해보자. 1층에서는 입력 \(x\)가 \(f(Wx+b)\)를 거쳐 \(y(x)\)로 부호화된다. 2층에서는 \(y(x)\)가 \(\tilde{f}(\tilde{W}y(x)+\tilde{b})\)을 통하여 \(x\)로 복호화된다. 즉, 이 신경망의 목표는 입력을 부호화한 뒤 이어 다시 복호화했을 때 원래의 입력을 충실하게 재현할 수 있는 파라미터를 찾는 것이다. 5.2. 자기부호화기의 설계 5.2.1 출력층의 활성화 함수와 오차함수 자기부호화기의 활성화 함수는 중간층의 \(f\)와 출력..