일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- 합성곱 신경망
- 자전거 여행
- bayesian
- 신경망
- 딥러닝
- backpropagation
- 오일러 프로젝트
- Convolutional Neural Network
- 냥코 센세
- 수달
- 비샤몬당
- Autoencoder
- c#
- 역전파
- 소인수분해
- project euler
- neural network
- 전처리
- 오토인코더
- SQL
- mnist
- Python
- Gram matrix
- A Neural Algorithm of Artistic Style
- 베이지안
- 소수
- CNN
- 히토요시
- 역전파법
- deep learning
- Today
- Total
목록backpropagation (2)
통계, IT, AI
1. 회귀문제- 본 포스팅에 있는 결과는 다음 첨부파일(code.7z)을 통하여 재현이 가능하다.- 역전파법을 회귀문제에 적용해보자. 실습을 위해 정의역이 \((-7,7)\)인 구간에서, \(\sin\)함수에 정규분포를 따르는 오차를 주어 적합해보자. 은닉층이 없는 경우와 있는 경우도 비교해본다. \(\epsilon\)과 같은 하이퍼 파라미터에 대한 설정은 첨부된 압축파일의 main_sin.py에 있다. - 그림 1은 은닉층을 추가하지 않고 적합한 결과이다. 붉은 선은 \(\sin\)함수, 파란 점은 에러를 추가한 자료 그리고 주황 선이 적합한 결과이다. 출력층의 활성화함수가 항등함수이기 때문에 단순선형회귀의 결과와 같다. - 그림 2는 같은 자료에 1개의 은닉층을 추가한 결과이다. 은닉층의 노드의 수는..
4. 역전파법: backpropagation 4.1 기울기 계산의 어려움 - 3장에서 설명한 경사하강법을 실행하기 위해서는 식 \((1)\)과 같이 \(E_n(\boldsymbol{w})\)에 대한 미분이 필요하다. 단, \(w^{(l),t}_{ji}\)는 \(t\)시점의 파라미터를 나타내며 \(E_n(\boldsymbol{w})\)은 \(n\)번째 미니배치의 오차함수이다. $$ w^{(l),t+1}_{ji} \leftarrow w^{(l),t}_{ji} - \epsilon \frac{\partial E_n(\boldsymbol{w})}{\partial w^{(l)}_{ji}} \tag{1}\label{(1)}$$ - 그런데 이 미분을 계산하는 것은 입력에 가까운 층일 수록 힘들다. 왜냐하면 \(\bol..